Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements
نویسندگان
چکیده
We discuss the application of the spectral element method to the monodomain and bidomain equations describing propagation of cardiac action potential. Models of cardiac electrophysiology consist of a system of partial differential equations coupled with a system of ordinary differential equations representing cell membrane dynamics. The solution of these equations requires solving multiple length scales due to the ratio of advection to diffusion that varies among the different equations. High order approximation of spectral elements provides greater flexibility in resolving multiple length scales. Furthermore, spectral elements are extremely efficient to model propagation phenomena on complex shapes using fewer degrees of freedom than its finite element equivalent (for the same level of accuracy). We illustrate a fully unstructured all-hexahedra approach implementation of the method and we apply it to the solution of full 3D monodomain and bidomain test cases. We discuss some key elements of the proposed approach on some selected benchmarks and on an anatomically based whole heart human computational model.
منابع مشابه
Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra
Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms. We propose two new families of high-order elements for hexahedra, triangular prisms and pyramids that recover the optimal convergence. These elements have compatible restrictions ...
متن کاملA Unified Multigrid Solver for the Navier-stokes Equations on Mixed Element Meshes
A uni ed multigrid solution technique is presented for solving the Euler and Reynoldsaveraged Navier-Stokes equations on unstructured meshes using mixed elements consisting of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms and tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, the contribution of the paper lies in the...
متن کاملSpectral/hp Methods For Elliptic Problems on Hybrid Grids
We review the basic algorithms of spectral/hp element methods on tetrahedral grids and present newer developments on hybrid grids consisting of tetrahedra, hexahedra, prisms, and pyramids. A unified tensor-product trial basis is developed for all elements in terms of non-symmetric Jacobi polynomials. We present in some detail the patching procedure to ensure C continuity and appropriate solutio...
متن کاملHigh-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: Application to cardiac electrophysiology☆
We present a numerical discretisation of an embedded two-dimensional manifold using high-order continuous Galerkin spectral/hp elements, which provide exponential convergence of the solution with increasing polynomial order, while retaining geometric flexibility in the representation of the domain. Our work is motivated by applications in cardiac electrophysiology where sharp gradients in the s...
متن کاملSimulation of Electrophysiological Waves with an Unstructured Finite Element Method
Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015